next up previous contents
Next: Circular Region: Up: Loop Elements Previous: Loop Elements   Contents

Clothoid 1: $(0 \leq s_{proj} \leq a_{1}t_{1_{f}} )$

The equation for the arclength of a clothoid, equation A.5, is used to determine $t$, the variable used for clothoid calculations.

\begin{displaymath}
t = \frac{s_{proj}}{a_{1}}
\end{displaymath}

The vertical angle through the loop is defined as the angle between the forward vector and the $x$-$y$ plane. It is found in the same manner as the azimuth angle is determined for a curve.

\begin{displaymath}
\phi = \frac{\pi t^{2}}{2}
\end{displaymath}

The projection of the loop in the $x$-$z$ plane is determined by the Fresnel Integrals. The $y$ coordinate varies linearly with the arclength of the loop.

$\displaystyle x$ $\textstyle =$ $\displaystyle a_{1} \ensuremath\int_{0}^{t} \cos(\frac{\pi}{2} u^{2})\,du$ (2.53)
$\displaystyle y$ $\textstyle =$ $\displaystyle s_{proj} \tan\alpha$ (2.54)
$\displaystyle z$ $\textstyle =$ $\displaystyle a_{1} \ensuremath\int_{0}^{t} \sin(\frac{\pi}{2} u^{2})\,du$ (2.55)

The calculation of the forward and radial vectors is nearly identical to the calculation in the curve. An abbreviated description will be shown here.

Derivatives with respect to arclength of the position vector must be taken. The required chain rule relationships are first determined.

\begin{eqnarray*}
\ensuremath \frac{dt}{ds} & = & \frac{1}{a_{1}} \cos\alpha \\...
...ensuremath \frac{d\phi}{ds} & = & \frac{\pi t}{a_{1}} \cos\alpha
\end{eqnarray*}



The forward vector is calculated as the derivative of the position vector with respect to arclength.

$\displaystyle f_{x}$ $\textstyle =$ $\displaystyle \ensuremath \frac{d\left[ a_{1} \ensuremath\int_{0}^{t} \cos(\frac{\pi}{2} u^{2})\,du \right]}{dt} \ensuremath \frac{dt}{ds}$  
  $\textstyle =$ $\displaystyle \cos\phi \cos\alpha$ (2.56)
$\displaystyle f_{y}$ $\textstyle =$ $\displaystyle \ensuremath \frac{d(s_{proj} \tan\alpha)}{ds_{proj}} \ensuremath \frac{ds_{proj}}{ds}$  
  $\textstyle =$ $\displaystyle \sin\alpha$ (2.57)
$\displaystyle f_{z}$ $\textstyle =$ $\displaystyle \ensuremath \frac{d\left[ a_{1} \ensuremath\int_{0}^{t} \sin(\frac{\pi}{2} u^{2})\,du \right]}{dt} \ensuremath \frac{dt}{ds}$  
  $\textstyle =$ $\displaystyle \sin\phi \cos\alpha$ (2.58)

The radial vector is calculated as the derivative of the forward vector with respect to arclength.

\begin{eqnarray*}
r_{x} & = & \ensuremath \frac{d\left( \cos\phi \cos\alpha \ri...
...\phi}{ds} \\
& = & \frac{\pi t}{a_{1}} \cos\phi \cos^{2}\alpha
\end{eqnarray*}



The unit vector in the direction of the radial vector must be determined.
$\displaystyle r_{x}$ $\textstyle =$ $\displaystyle -\sin\phi$ (2.59)
$\displaystyle r_{y}$ $\textstyle =$ $\displaystyle 0$ (2.60)
$\displaystyle r_{z}$ $\textstyle =$ $\displaystyle \cos\phi$ (2.61)

The curvature is the magnitude of the (non-unit) radial vector.
\begin{displaymath}
k = \frac{\pi t}{a_{1}} \cos^{2}\alpha
\end{displaymath} (2.62)


next up previous contents
Next: Circular Region: Up: Loop Elements Previous: Loop Elements   Contents
Darla Weiss 2000-02-13