next up previous contents
Next: All Regions Up: Corkscrew Elements Previous: Circular Region:   Contents

Clothoid 2: $(a_{1}t_{1_{f}} + r \delta \leq s_{proj} \leq l_{proj} )$

The end of the corkscrew has zero curvature, and is where $t=0$. Therefore, $t$ ranges from $t=t_{1_{f}}$ at the beginning of clothoid 2, to $t=0$ at the end of clothoid 2.

\begin{displaymath}
t = t_{1_{f}} - \frac{s_{proj} - (a_{1}t_{1_{f}} + r \delta)}{a_{2}}
\end{displaymath}

The vertical angle through clothoid 2 is found from the following.

\begin{displaymath}
\phi = \frac{\pi t^{2}}{2}
\end{displaymath}

The coordinates at the end of the corkscrew are found from the coordinates of the center of the circular region of the corkscrew.

\begin{eqnarray*}
x_{f} & = & x_{c} - r \sin \left( \frac{\delta}{2} \right) + ...
...2} \ensuremath\int_{0}^{t_{2_{f}}} \sin(\frac{\pi}{2} u^{2})\,du
\end{eqnarray*}



The position of all points along the clothoid can now be calculated relative to the zero curvature end. The $y$ component is determined the same way as for the previous sections.

\begin{eqnarray*}
x & = & x_{f} - a_{2} \ensuremath\int_{0}^{t} \cos(\frac{\pi}...
...f} + a_{2} \ensuremath\int_{0}^{t} \sin(\frac{\pi}{2} u^{2})\,du
\end{eqnarray*}



The position vector is now rotated downward $\lambda$ radians about the $x$ axis.
$\displaystyle x$ $\textstyle =$ $\displaystyle x_{f} - a_{2} \ensuremath\int_{0}^{t} \cos(\frac{\pi}{2} u^{2})\,du$ (2.104)
$\displaystyle y$ $\textstyle =$ $\displaystyle s_{proj} \tan\alpha \cos\lambda - \left[ z_{f} + a_{2} \ensuremath\int_{0}^{t} \sin(\frac{\pi}{2} u^{2})\,du \right] \sin\lambda$ (2.105)
$\displaystyle z$ $\textstyle =$ $\displaystyle s_{proj} \tan\alpha \sin\lambda + \left[ z_{f} + a_{2} \ensuremath\int_{0}^{t} \sin(\frac{\pi}{2} u^{2})\,du \right] \cos\lambda$ (2.106)

Derivatives with respect to arclength of the position vector must be taken. The required chain rule relationships are first determined.

\begin{eqnarray*}
\ensuremath \frac{dt}{ds} & = & -\frac{1}{a_{2}} \cos\alpha \...
...nsuremath \frac{d\phi}{ds} & = & -\frac{\pi t}{a_{2}} \cos\alpha
\end{eqnarray*}



The forward vector is calculated as the derivative of the position vector with respect to arclength.

\begin{eqnarray*}
f_{x} & = & \ensuremath \frac{d\left[ x_{f} - a_{2} \ensurema...
...uremath \frac{dt}{ds}
\nonumber \\
& = & -\sin\phi \cos\alpha
\end{eqnarray*}



This vector is then rotated $\lambda$ radians about the $x$ axis.
$\displaystyle f_{x}$ $\textstyle =$ $\displaystyle \cos\phi \cos\alpha$ (2.107)
$\displaystyle f_{y}$ $\textstyle =$ $\displaystyle \sin\alpha \cos\lambda + \sin\phi \cos\alpha \sin\lambda$ (2.108)
$\displaystyle f_{z}$ $\textstyle =$ $\displaystyle \sin\alpha \sin\lambda - \sin\phi \cos\alpha \cos\lambda$ (2.109)

The radial vector is calculated as the derivative of the forward vector with respect to arclength.

\begin{eqnarray*}
r_{x} & = & \ensuremath \frac{d\left( \cos\phi \cos\alpha \ri...
...\phi}{ds} \\
& = & \frac{\pi t}{a_{2}} \cos\phi \cos^{2}\alpha
\end{eqnarray*}



The unit vector in the direction of the radial vector must be determined.

\begin{eqnarray*}
r_{x} & = & \sin\phi \\
r_{y} & = & 0 \\
r_{z} & = & \cos\phi
\end{eqnarray*}



This vector is then rotated $\lambda$ radians about the $x$ axis.
$\displaystyle r_{x}$ $\textstyle =$ $\displaystyle \sin\phi$ (2.110)
$\displaystyle r_{y}$ $\textstyle =$ $\displaystyle -\cos\phi \sin\lambda$ (2.111)
$\displaystyle r_{z}$ $\textstyle =$ $\displaystyle \cos\phi \cos\lambda$ (2.112)

The curvature is the magnitude of the (non-unit) radial vector.
\begin{displaymath}
k = \frac{\pi t}{a_{2}} \cos^{2}\alpha
\end{displaymath} (2.113)


next up previous contents
Next: All Regions Up: Corkscrew Elements Previous: Circular Region:   Contents
Darla Weiss 2000-02-13